

The good old days

With IPv4, only two methods:

-Static

-DHCPv4

Types of Addresses

Global/routable addresses

"Private" RFC 1918 non-routable

Anycast (sort of)

Classic: static

 StateLess Address Auto Configuration (SLAAC)

Stateful (DCHPv6)

Address Types

Unicast

Multicast

Anycast

SLAAC

 SLAAC == StateLess Address AutoConfiguration

Uses Router Advertisement (RA) messages

Network policy moved to the edge

SLAAC Sequence

- Client configures link-local address
 - Generates 64 bit host ID
 - Combines link local prefix and EUID to generate tentative address (such as fe80::028c:f5ff:fe05:4235)
 - Does DAD (Duplicate Address Detection)
 - Sends a multicast Neighbor Solicitation message containing its new tentative address to the solicited node address
 - If no other node responds with a Neighbor Advertisement using that address, the host configures itself with that address

SLAAC Sequence cont.

- Host now looks for Router Advertisement (RA) Messages
 - Sends multicast Router Solicitation message
 - Listens for RA messages
 - Configures itself based on contents of RA message, including doing DHCPv6

RA Message Contents

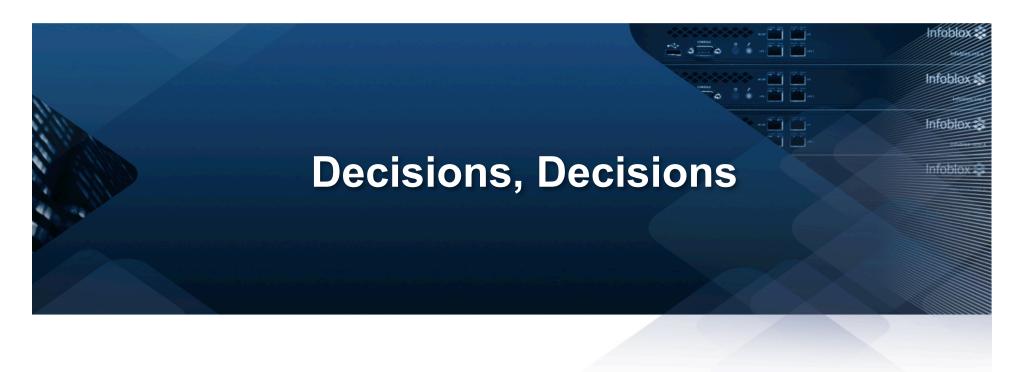
- Local prefix(es), including A (autonomous address configuration) flag
- Router info
 - Router's link-level address
 - Lifetime of default route
 - Router priority
- Flags: M (ManagedAddress) flag and O (OtherConfiguration) flag
- Maximum Transmission Unit (MTU) of upstream link

Not in RA Messages...

RDNS server

NTP or "other" configuration

RFC 6106 for RDNS in RA


– Lack of client support...

DHCPv6

- "public" or "private" (temporary) addresses
- RDNS server, NTP, TFTP
- Vendor options
- But no default route!

Differences

DHCPv6

- Filter/control access
- Update IP address management system
- Update A/PTR records in DNS
- Further from client, more centralized
- Handles more complex configs, phones, printers, etc.

Differences

SLAAC

- -Local/fast
- Light weight
- Decentralized
- No logging, A/PTR updates or IPAM updates

Your priorities

- Do you have auditing or logging requirements?
- Centralized or distributed management
- Technical level of support staff
- Range of different gear?

DHCPv4-like DHCPv6

- Send RA messages with A=0, O/M=1
- DHCP for all configurations except default route
- DHCP server does A/PTR and IPAM updates

Coffee House Setup

- Send RA messages with A/O=1, M=0
- Send RDNS in RA messages
- DHCP server does no leases, just gives
 DNS for clients that can't do RFC 6106

How did this all start?

ftp (ftp.uu.net, ftp.wustl.edu)

SMTP

Security devices

Silly web things

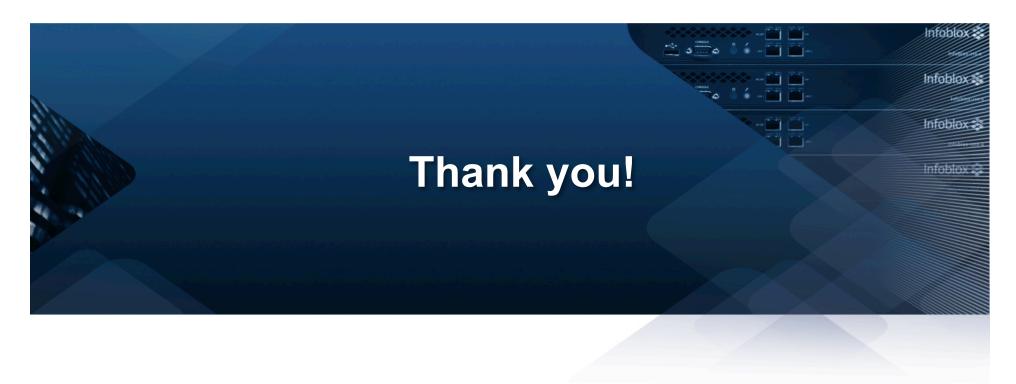
How did we do it IPv4

- By hand (ow)
- Scripts
- \$GENERATE
- IPAM

How would that work for IPv6?

- A single subnet is a /64
- A /64 has 18 quintillion (4 bil x 4 bil) addrs
- A PTR record has 34 labels in IPv6
- Anyone got a computer with enough disk or RAM to hold one /64 zone file?

So what are we left with?



- Admit that PTRs are pointless
- Pre-populate (assuming FTL travel...)
- Pre-populate statics for routers & big servers
- As previous plus DHCP server adding clients
- Lie on the fly (if not doing DNSSEC)

