
Google Confidential and Proprietary

Localizing packet loss
In a large complex network

Google Confidential and Proprietary

Traditional network monitoring: White box

White box monitoring it's basically asking the device and monitor its
vital parameters.

Unfortunately this is far from being good enough, too many times the
device either 'lie' or not tell you the whole picture.

If we can't trust it, we need to test it. CPU
usage ?Interface

errors?

Queue
drops ?

Google Confidential and Proprietary

Traditional network monitoring: Black box

Black box monitoring consists in sending synthetic traffic that mimics
production traffic and analyse characteristics such as packet loss,
latency, jitter, packet corruption, CoS misclassification,...

sender/
receiver

sender/
receiver sender/

receiver

sender/
receiversender/

receiver

Two major drawbacks:

● Only the best paths between the
senders/receivers are monitored.

● It is hard to isolate a faulty element

Google Confidential and Proprietary

How do we cover every
component ?
not only the best paths

Google Confidential and Proprietary

Exhaustive coverage.

We can't just rely on destination based routing, otherwise only the best
paths between two locations would get tested.

We source route the test packets instead.

With source routing, we can target what gets monitored and ensure full
layer3 coverage.

For layer3 paths composed with link aggregation groups, we cover
them by creating n distinct flows per individual link (today we use n=4).
The flows need to match the hashing algorithm configured.

Google Confidential and Proprietary

Exhaustive coverage.

More importantly, instead of testing simply interfaces and nodes, we
test the ability for a node to forward a packet from every ingress to
every egress interfaces.
We test every combination of ingress to egress for each node.

ingress

egress 1

egress 2

egress 3

Google Confidential and Proprietary

Exhaustive coverage: Testing every forwarding path

Quick illustration of what the coverage of a typical Core, Distribution,
Access topology would look like.

Google Confidential and Proprietary

How do we localize faulty
components ?

Google Confidential and Proprietary

Where did my packet go ?

$ ping 1.1.1.1
PING 1.1.1.1 (1.1.1.1): 56 data bytes
Request timeout for icmp_seq 0
Request timeout for icmp_seq 1
Request timeout for icmp_seq 2
Request timeout for icmp_seq 3
^C
--- 1.1.1.1 ping statistics ---
5 packets transmitted, 0 packets received,
100.0% packet loss

Dropped on the way there ?

Dropped on the way back ?

Fiber ? Link ? Node ?
Switching fabric ?

What was the state of the
network at the moment of the
failure?

Google Confidential and Proprietary

Isolate a fault in a complex network
With traditional blackbox monitoring this is similar to finding a needle in
a haystack.

But we know where the test packets go before they even leave
(source routing) and we test every single path one by one.

If the red link is the only
common component to the
failed tests, then it's the root
cause.

Google Confidential and Proprietary

Our current implementation, entropic paths

Google Confidential and Proprietary

What did we learn ?

Google Confidential and Proprietary

It works

● It is working pretty well, we found problems that nobody knew
about

● Silent drops are not that frequent but it does happen regularly
● The system finds low level packet loss down to 0.01%
● It takes about 30 seconds with our current deployment, from fault to

localization
● We can test components (interfaces, links, devices) not yet in

production. Because we use source based routing (in the form of
RSVP-TE LSPs signaled with strict static EROs)

● We found RSVP signaling errors (bugs or shortcuts to improve
convergence time)

Google Confidential and Proprietary

It creates a lot of state

For a 16 interfaces device it creates at least 240 tests. When using
RSVP-TE that results in 240 LSPs. Multiply that by hundreds for a large
network and the RSVP state and amount of nexthops can become a
problem.

The "mapping" and correlation can become fairly complex to limit the
amount of of state, especially on transit nodes.

Google Confidential and Proprietary

What's next ?
Reducing state

Google Confidential and Proprietary

Reduce state

An alternative is not to use RSVP but keep the state in the test packets
instead.

Let say we want to test:
A -> B -> C -> D -> B -> A

A B

C

D

Google Confidential and Proprietary

Reduce state: One hop static LSP

We can create static LSPs that direct traffic to a specific interface and
POP the label.
 Interface 1

 A B

 D

 C

1 1

2

2

1

1
2

2

1

Google Confidential and Proprietary

Reduce state: One hop static LSP

We want to send a packet through the following path:
A:1 ->B:1
B:2 ->C:1
C:2 ->D:2
D:1 ->B:2
B:1 ->A:1

 A B

 D

 C

1 1

2

2

1

1
2

2

Google Confidential and Proprietary

Reduce state: One hop static LSP

We just build a packet with the following stacked labels:
[1, 2, 2, 1, 1(S)]

Router A has a static LSP that says:
For packets with incoming label 1, pop the label and forward to interface
1.

 A B

 D

 C

1 1

2

2

1

1
2

2

Google Confidential and Proprietary

Reduce state: One hop static LSP

1. Router A: [1, 2, 2, 1, 1]
=>POP label 1 and fwd to Router B

2. Router B: [2, 2, 1, 1]
=>POP label 2 and fwd to Router C

3. Router C: [2, 1, 1]
=>POP label 2 and fwd to Router D

4. Router D: [1, 1]
=>POP label 1 and fwd to Router B

5. Router B: [1]
=>POP label 1 and fwd to Router A

Router A looks up the IP dest address and
sends the packet to its destination.

 A B

 D

 C

1 1

2

2

1

1
2

2

Google Confidential and Proprietary

Questions ?

