cisco

The Layer-2 Security Issues and the Mitigation Techniques

Eric Vyncke

Cisco

Distinguished Engineer

evyncke@cisco.com Eric.Vyncke@ipv6council.be Eric.Vynce@ulg.ac.be

Networks are Sand Castles... Attacker Layer-7 Data and services Layer-2 **Firewall**

Courtesy of Curt Smith

Rogue Router Advertisement

Router Advertisements contains:

- -Prefix to be used by hosts
- -Data-link layer address of the router
- -Miscellaneous options: MTU, DHCPv6 use, ...

RA w/o Any Authentication Gives Exactly Same Level of Security as DHCPv4 (None)

Data = Query: please send RA

Data= options, **prefix**, lifetime, A+M+O flags

Rogue RA – Mitigation Techniques

Where	What
Routers	Increase "legal" router preference
Hosts	Disabling Stateless Address Autoconfiguration
Routers & Hosts	SeND "Router Authorization"
Switch (First Hop)	Host isolation
Switch (First Hop)	Port Access List (PACL)
Switch (First Hop)	RA Guard

Secure Neighbor Discovery (SeND) RFC 3971

Mitigating Rogue RA: Host Isolation

 Prevent Node-Node Layer-2 communication by using:

Private VLANs (PVLAN) where nodes (isolated port) can only contact the official router (promiscuous port)

WLAN in 'AP Isolation Mode'

1 VLAN per host (SP access network with Broadband Network Gateway)

 Link-local multicast (RA, DHCP request, etc) sent only to the local official router: no harm

Mitigating Rogue RA: RFC 6105

Port ACL blocks all ICMPv6 RA from hosts

```
interface FastEthernet0/2
ipv6 traffic-filter ACCESS_PORT in
access-group mode prefer port
```

• RA-guard lite (12.2(33)SXI4 & 12.2(54)SG): also dropping all RA received on this port

```
interface FastEthernet0/2
ipv6 nd raguard
access-group mode prefer port
```

• **RA-guard** (12.2(50)SY)

```
ipv6 nd raguard policy HOST device-role host
ipv6 nd raguard policy ROUTER device-role router
ipv6 nd raguard attach-policy HOST vlan 100
interface FastEthernet0/0
  ipv6 nd raguard attach-policy ROUTER
```


RA-Guard (RFC 6105)

- Switch selectively accepts or rejects RAs based on various criteria's
- Can be ACL based, learning based or challenge (SeND) based.
- Hosts see only allowed RAs, and RAs with allowed content

Here comes Fragmentation...

- Extension headers chain can be so large than it is fragmented!
- RFC 3128 is not applicable to IPv6
- Layer 4 information could be in 2nd fragment

Layer 4 header is in 2nd fragment

Parsing the Extension Header Chain Fragments and Stateless Filters (RA Guard)

- RFC 3128 is not applicable to IPv6, extension header can be fragmented
- ICMP header could be in 2nd fragment after a fragmented extension header
- RA Guard works like a stateless ACL filtering ICMP type 134
- THC fake_router6 –FD implements this attack which bypasses RA Guard
- Partial work-around: block all fragments sent to ff02::1

 'undetermined-transport' is even better

 Does not work in a SeND environment (larger packets) but then no need for RA-guard ©

Attacking Neighbor Discovery with NDP Spoofing

Neighbor Advertisement can be Spoofed

- Pretty much like RA: no authentication
 Any node can 'steal' the IP address of any other node
 Impersonation leading to denial of service or MITM
- Requires layer-2 adjacency
- IETF SAVI Source Address Validation Improvements (work in progress)

NDP Spoofing Mitigations

Where	What
Routers & Hosts	configure static neighbor cache entries
Routers & Hosts	Use CryptoGraphic Addresses (SeND CGA)
Switch (First Hop)	Host isolation
Switch (First Hop)	 Address watch Glean addresses in NDP and DHCP Establish and enforce rules for address ownership

SAVI: How to Learn?

- If a switch wants to enforce the mappings < IP address, MAC address> how to learn them?
- Multiple source of information

SeND: verify signature in NDP messages, then add the mapping

DHCP: snoop all messages from DHCP server to learn mapping (same as in IPv4)

NDP: more challenging, but 'first come, first served'

The first node claiming to have an address will have it

NDP Spoofing – Mitigation: Binding Integrity at the First Hop

NDP Spoofing – Mitigation: Address Watch at the First Hop

- Preference is a function of: configuration, learning method, credential provided
- Upon collision, choose highest preference (for instance static, trusted, CGA, DHCP preferred over dynamic, not_trusted, not_CGA, SLACC)
- For collision with same preference, choose First Come, First Serve

Exhausting the Neighbor Cache

Scanning Made Bad for CPU Remote Neighbor Cache Exhaustion

 Remote router CPU/memory DoS attack if aggressive scanning Router will do Neighbor Discovery... And waste CPU and memory

Mitigating Remote Neighbor Cache Exhaustion

- Mainly an implementation issue
 - Rate limiter on a global and per interface
 - Prioritize renewal (PROBE) rather than new resolution
 - Maximum Neighbor cache entries per interface and per MAC address
- Internet edge/presence: a target of choice
 - Ingress ACL permitting traffic to specific statically configured (virtual) IPv6 addresses only
 - ⇒Allocate and configure a /64 but uses addresses fitting in a /120 in order to have a simple ingress ACL
- Using a /64 on point-to-point links => a lot of addresses to scan!
 Using /127 could help (RFC 6164)

Simple Fix for Remote Neighbor Cache Exhaustion

- Ingress ACL allowing only valid destination and dropping the rest
- NDP cache & process are safe

Addressing the Attendees-Exhaustion with Summary

Summary

- Without a secure layer-2, there is no upper layer security
- Rogue Router Advertisement is the most common threat
- Mitigation techniques
 - Host isolation
 - Secure Neighbor Discovery: but not a lot of implementations
 - SAVI-based techniques: discovery the 'right' information and dropping RA/NA with wrong information
 - Last remaining issue: (overlapped) fragments => drop all fragments...
- Neighbor cache exhaustion
 - Use good implementation
 - Expose only a small part of the addresses and block the rest via ACL
- Products are now available implementing the techniques;-)

First Hop Security in September 20 Reference

 IPv6 VLAN ACL & RA-Guard lite: 12.2(54)SG, 3.2.0SG, 15.0(2) SG, 12.2(33)SXI4

NDP inspection & RA-Guard:

Cat 6K Sup 2T: 12.2(50)SY and 15.0(1)SY

WLC: 7.2

7600: XE 7.0

Cat 2K/3K: 15.0(2)SE

For more Information:

http://www.cisco.com/en/US/docs/ios/ipv6/configuration/guide/ip6-roadmap.html

http://www.cisco.com/en/US/docs/ios-xml/ios/ipv6/configuration/15-2mt/ip6-first-hop-security.html

Any Question?

And a shameless plug

Thank you.

