Objectives Issues Results

Correlating routing configuration changes with forwarding changes

David Lebrun

IIJ Innovation Institute

September 25, 2012

Correlating routing configuration changes with forwarding changes

- Determine if we can correlate routing conf changes with forwarding changes
- Routing configuration data obtained from a Tier-1 ISP
- Forwarding changes data obtained from own measurements
- We want to measure latency and path changes
- The goal is to detect eBGP events

Objectives Issues Results

Objectives Methodology

Objectives

- What measurements ?
 - Pings for latency
 - Traceroutes for path changes
- From where ?
 - Servers
 - Atlas probes
- To what ?
 - ISP's routers or some reachable IP

About Atlas probes

- The probes are distributed world wide within plenty of ASes
- Currently about 1,500 probes are active
- In theory, perfect tool to measure a worldwide ISP
- We need to investigate the capacities and limitations of the Atlas probes

Material overview

- What do we have ?
 - Syslog of routers
 - CVS of configurations (RANCID, runs every two hours)
 - A list of thousands of reachable IPs in the neighborhood of the ISP
 - The list of all active Atlas probes
 - Three dedicated servers with ISP as transit provider (Seattle, Ashburn, Dallas)

Organizing the data

• Prepare reachable IPs

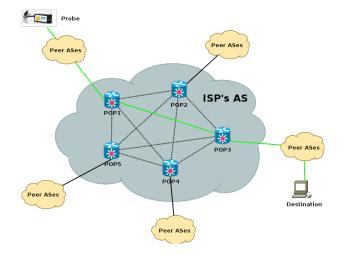
- Perform traceroutes to each IP to have the exit POP
- Remove IPs for which there is only one hop in ISP
- Clusterize IPs with respect to their exit POP
- Prepare probes list
 - Take probes belonging to neighboring ASes
 - For all probes, perform a traceroute to some random reachable IPs
 - So that we can find the entry POP(s)
 - Clusterize the probes w.r.t. their entry POP

Objectives Issues Results

Objectives Methodology

Measuring

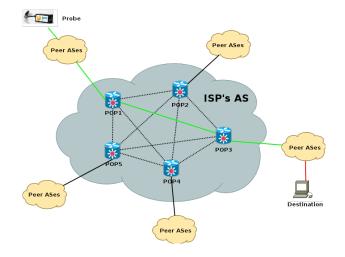
- Main idea
 - For each probes cluster, select a probe
 - For each selected probe, for each IP cluster, select an IP
 - Ping or traceroute the IP from the probe
 - Repeat periodically


- Reminder: we want to detect eBGP events
- If we ping IPs in the neighborhood (IPs in the previously computed clusters)
 - Will detect unrelated events
 - No guarantee that the ping will go through ISP unless route is enforced by provider (localpref)
 - eBGP events can originate from farther in the as-path
 - The larger the distance from the target IP and the ISP, the more the noise will increase

Objectives Issues Results Ping issues Traceroute issues Probes issues

Ping issues

- If we ping ISP's border routers or direct neighbors
 - Difficult to detect eBGP events
 - But we can detect internal changes
 - We can also detect congested links due to eBGP events

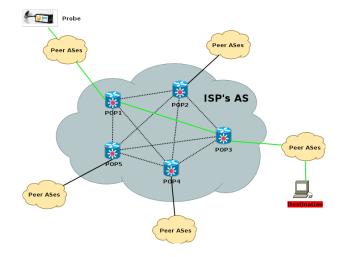

Illustration

ि 🗄 🔊 ९ ० David Lebrun

《曰》 《聞》 《臣》 《臣》

Unwanted event

ि 🗄 🔊 ९ ० David Lebrun


・ロト ・部ト ・ヨト ・ヨト

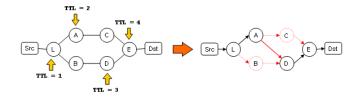
 Objectives
 Ping issues

 Issues
 Traceroute issues

 Results
 Probes issues

Unwanted event

ि 🗄 🔊 ९ ० David Lebrun


・ロト ・部ト ・ヨト ・ヨト

Traceroute issues

- Big issue with standard traceroute: load balancers
- Standard techniques cannot properly handle equal-cost multipaths
- Leads to detection of non existent links

Objectives	Ping issues
Issues	Traceroute issues
Results	Probes issues

Traceroute issues

Source: http://www.paris-traceroute.net/about

Correlating routing configuration changes with forwarding changes

Solution

- To solve this problem: paris-traceroute
- Use a Multipath Detection Algorithm
- Basic idea
 - Keep constant tuple (srcIP, srcPort, dstIP, dstPort)
 - Mark packets with fields not used to distinguish flows

	Objectives Issues Results	Ping issues Traceroute issues Probes issues
aris traceroute		

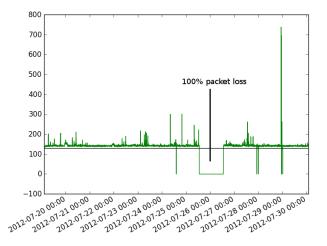
- Now we have a multipath-aware traceroute
- No longer affected by per-flow load balancers

Pa

Probes issues

- Most of probes do not use ISP as default provider
 - Some pairs (probe,IP) go through ISP
 - Most of these probes are more than 4 hops away from ISP (and more than 2 ASes away)
- High rate of path changes
 - The probes don't keep constant params for same dest across different traceroutes

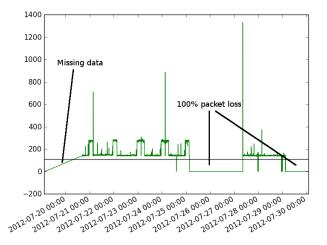
	Objectives Issues Results	Ping issues Traceroute issues Probes issues	
Probes issues			


• Lot of noise in the ping data

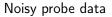
- High stddev
- Huge latency peaks
- Missing data

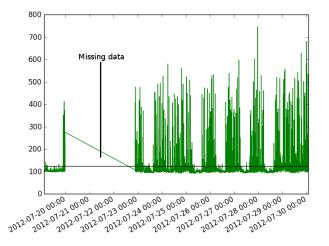
Objectives Issues Results Ping issues Traceroute iss Probes issues

Probes issues


Noisy probe data

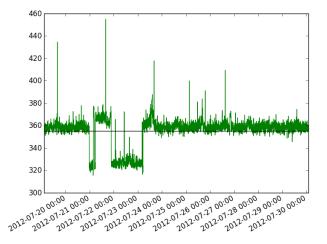
Correlating routing configuration changes with forwarding changes


Probes issues


Noisy probe data

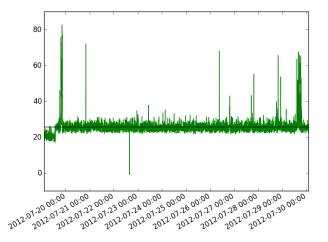
Correlating routing configuration changes with forwarding changes

Probes issues



Correlating routing configuration changes with forwarding changes

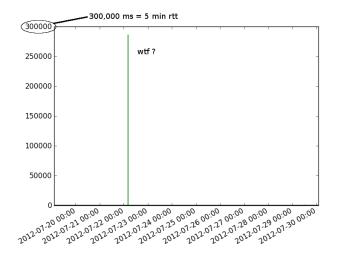
Probes issues


Clean probe data

Correlating routing configuration changes with forwarding changes

Probes issues

Clean probe data


Correlating routing configuration changes with forwarding changes

 Objectives
 Ping issues

 Issues
 Traceroute issues

 Results
 Probes issues

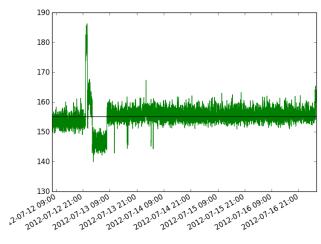
Probes issues

ि 🗄 🔊 ९ ० David Lebrun

Objectives Pings Issues Traceroutes Results Conclusion

Results

Correlating routing configuration changes with forwarding changes


ि ह ्र David Lebrun

∢ 臣 ≯

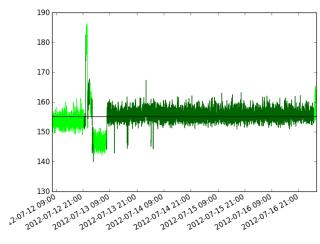
・ロト ・ 日 ・ ・ 正 ・

Objectives Pings Issues Tracero Results Conclus

Ping results

POP1 (Europe) average latency

David Lebrun

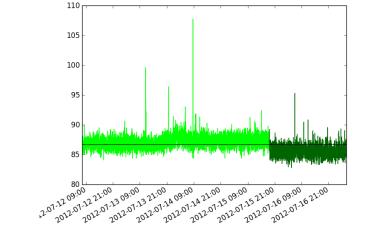

э

	Objectives Issues Results	Pings Traceroutes Conclusion	
Period detection			

- We would like to detect the different periods
- Some heuristic is used to automate this

Objectives Pings Issues Trace Results Concl

Period detection


POP1 (Europe) average latency

David Lebrun

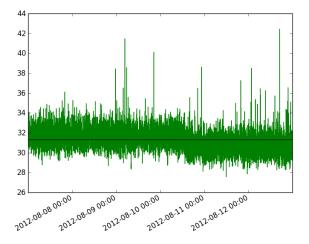
э

Correlating routing configuration changes with forwarding changes

David Lebrun

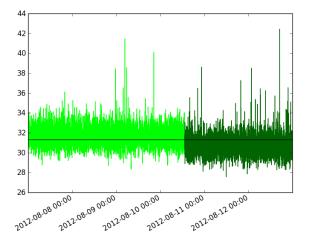
Objectives

lssues Results


POP2 (US) average latency

Pings

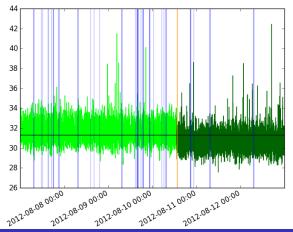
Period detection


Objectives Pings Issues Traceroute Results Conclusion

Period detection

Objectives Pings Issues Tracero Results Conclu

Period detection

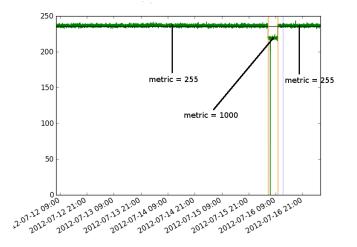

David Lebrun

э

Objectives Pings Issues Traceroute Results Conclusion

Correlation with commits

Orange line = commit near transition. In this case, addition of a link to an aggregated SONET link

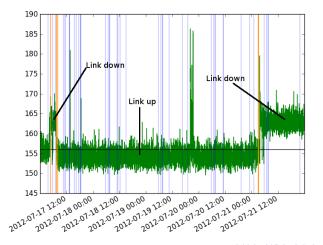


Correlating routing configuration changes with forwarding changes

Objectives Issues Results Pings Traceroutes Conclusion

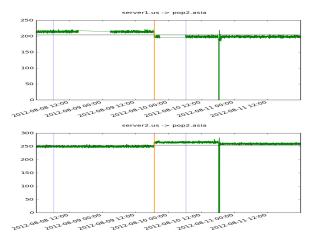
Correlation with commits

IGP metric increase/decrease



Correlating routing configuration changes with forwarding changes

Objectives Issues **Results** Pings Traceroutes Conclusion


Correlation with commits

Link maintenance

Correlation with commits

MPLS Label-Switched Path configuration change

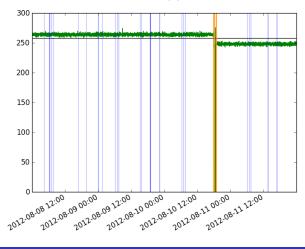
Correlating routing configuration changes with forwarding changes

ि 📃 🔊 ९ (David Lebrun

프 (프)

Pings Traceroutes Conclusion

Correlation with commits


What happened here ?

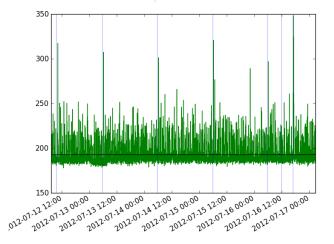
- Change in bandwidth allocation of some LSPs
- Between server1.us and pop2.asia
 - Bw server1.us \rightarrow pop2.asia: +38%
 - Bw pop2.asia \rightarrow server1.us: +300%
 - RTT decreased
- Between server2.us and pop2.asia
 - Bw server2.us \rightarrow pop2.asia: -7%
 - Bw pop2.asia \rightarrow server2.us: +90%
 - RTT increased

Objectives Issues Results Pings Traceroutes Conclusion

Correlation with commits

Router upgrade

server2.us -> pop1.asia


Correlating routing configuration changes with forwarding changes

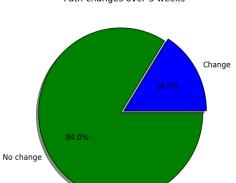
David Lebrun

Objectives Issues Results Pings Traceroutes Conclusion

Correlation with commits

RTT peak: prefix-list change

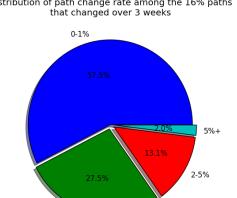
Correlating routing configuration changes with forwarding changes


David Lebrun

Objectives	Pings
Issues	Traceroutes
Results	Conclusion

- Traceroutes performed from servers, to 5,300 targets
- Batch run every hour
- About 16% of the paths changed at least once

	Objectives Issues Results	Pings Traceroutes Conclusion		
Traceroutes				


Path changes over 3 weeks

Correlating routing configuration changes with forwarding changes

े≣ ∽९९ David Lebrun

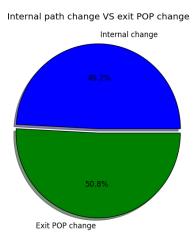
・ロト ・聞 ト ・ ヨト ・ ヨトー

Distribution of path change rate among the 16% paths

1-2%

Correlating routing configuration changes with forwarding changes

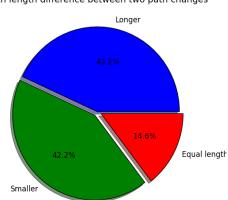
э David Lebrun


Objectives	Pings
Issues	Tracerou
Results	Conclusio

Traceroutes

Two classes of traceroutes

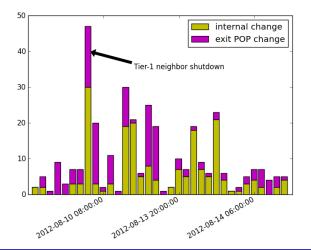
- Internal path change
 - IGP change, LBs, link/router failure
- Exit POP change
 - eBGP change inside/outside ISP's AS, link/router failure



David Lebrun

< 一型

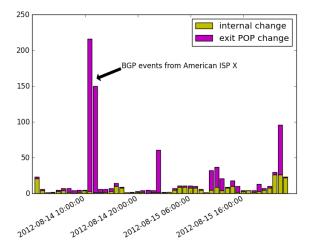
Path length difference between two path changes


Correlating routing configuration changes with forwarding changes

ि 🗄 🔊 ९ ० David Lebrun

< 一型

Aggregated data showing the number of path changes in fct of time



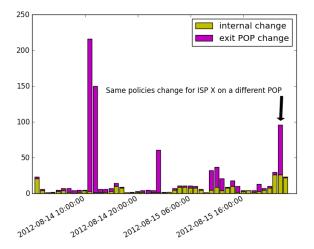
Correlating routing configuration changes with forwarding changes

David Lebrun

ObjectivesPingsIssuesTraceroutesResultsConclusion


Traceroutes

David Lebrun


Objectives Pings Issues Traceroutes Results Conclusion

Traceroutes

ObjectivesPingsIssuesTraceroutesResultsConclusion

Traceroutes

David Lebrun

э

Summary of the measurements

- Most events are IGP related
- Most of IGP events are link maintenances
- Less eBGP events than expected
- Most of eBGP events come from outside the ISP's AS and thus cannot be correlated with a configuration change
- Important events are easily detected even from a few sources
- Atlas probes need more work to be really usable in a project of this scale

Conclusion

- Prefix-list updates can generate RTT peak on the router
- Interface shutdown causes permanent RTT change and internal path changes
- MPLS changes can cause RTT changes
- eBGP events (from the inside or the outside) cause exit POP change (unsurprisingly)

Objectives	Pings
Issues	Traceroutes
Results	Conclusion

Conclusion,

- IGP events easy to detect and correlate
- Significant eBGP events are easy to detect
- More difficult to correlate as it can originate from the outside

What was cool with the Atlas probes ?

- The JSON interface is very useful for scripting
- The ability to manually specify multiple probes for a single UDM
- Geographical dispersion of the probes
- Overall, the system works quite well
- The Atlas team for granting us credits :)

What can be improved ?

- Handling of bulk measurements (probes per UDM and UDMs per probe)
- Fetching results (interface response time)
- Paris-traceroute implementation

	Objectives Issues Results	Pings Traceroutes Conclusion	
Conclusion			

Questions ?

Correlating routing configuration changes with forwarding changes

David Lebrun